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380 TAKA1 ET AL. 

ABSTRACT 

Keto-enol tautomerism of  mono-subs t i tu ted  

phenylpyruvic  acids has  been s t u d i e d  by t h e  'H and 13C NMR 

s p e c t r a .  The e q u i l i b r i u m  c o n s t a n t s  and t h e  k i n e t i c  

parameters  for t h e  tautomerism w e r e  ob ta ined  from t h e  

s p e c t r a l  d a t a .  The e q u i l i b r i u m  c o n s t a n t s  are s t r o n g l y  

dependent on t h e  p o s i t i o n  of t h e  s u b s t i t u t i o n ;  t h e  v a l u e s  

f o r  t h e  o - s u b s t i t u t e d  PPAs are s e v e r a l  times g r e a t e r  t h a n  

t h o s e  of t h e  m- or p - s u b s t i t u t e d  d e r i v a t i v e s .  The PM3 

c a l c u l a t i o n s  havebeencarriedouttoobtaintheinformation 

on t h e  p r e f e r r e d  conformat ions  of t h e  tau tomers  and on t h e  

mechanism f o r  t h e  tautomerism.  The r e s u l t s  sugges t  t h e  

involvement of a s o l v e n t  molecule  i n  t h e  e q u i l i b r i u m  

process .  

INTRODUCTION 

B i o l o g i c a l  importance of a - k e t o  acids such  as 

phenylpyruvic  acid (PPA) has been w e l l  recognized .  PPA i s  

known as a metabolite of pheny la l an ine  found i n  t h e  u r i n e  

of p a t i e n t s  a f f l i c t e d  wi th  pheny lke tonur i a  ' ) .  Besides 

t h e i r  b i o l o g i c a l  r o l e s ,  PPA has a roused  many r e s e a r c h  

i n t e r e s t s  i n  s t r u c t u r a l  chemis t ry .  Owing t o  t h e  chemical  

n a t u r e  of t h e  a - k e t o  carbonyl  group, PPA can  e x i s t  i n  t h e  
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KETO-ENOL TAUTOMERISM 38 1 

k e t o  and t h e  enol  form. The t au tomer i c  behavior  of  PPA has  

been e x t e n s i v e l y  s t u d i e d  by s p e c t r o s c o p i c  methods bo th  i n  

s o l u t i o n  and i n  t h e  so l id  state.  Sciacovelli e t  a l .  

r e p o r t e d  on t h e  e x i s t e n c e  of  t h e  hydra ted  k e t o  form on t h e  

basis of t h e  NMR, I R  and W d a t a .  2-3’ W e  have i n v e s t i g a t e d  

t h e  molecular  s t r u c t u r e s  of PPA i n  s o l u t i o n  and i n  t h e  solid 

s ta te  by I R ,  Raman and s o l i d  state NMR spectra.‘-’’ 

Tautomeric e q u i l i b r i a  of  o rgan ic  compounds are 

presumed t o  be s e n s i t i v e  t o  v a r i o u s  k inds  of  f ac to r s .* ’  

I n t r o d u c t i o n  of  s u b s t i t u e n t  groups i n t o  t h e  phenyl  r i n g  

a f f e c t s  t h e  e l e c t r o n i c  and steric environments i n  t h e  PPA 

s y s t e m a n d c a u s e s s h i f t s  i n  t h e p o s i t i o n o f t h e e q u i l i b r i u m .  

I n  t h e  p r e s e n t  work, we have i n v e s t i g a t e d  t h e  t au tomer i c  

behavior  of mono-subst i tuted PPAs c a r r y i n g  v a r i o u s  

s u b s t i t u e n t s .  Equi l ibr ium c o n s t a n t s  and k i n e t i c  

parameters  w e r e  ob ta ined  from t h e  ’H NMR data. 

Semiempir ical  MO c a l c u l a t i o n s  w e r e  carried o u t  i n  order t o  

conf i rm t h e  t au tomer i c  and conformat iona l  p re fe rences  and 

o b t a i n  in fo rma t ion  on t h e  reaction mechanism. 

EXPERIMENTAL 

Materials 

PPA was  prepared  by a c i d i f i c a t i o n  o f  sodium 

phenylpyruvate  monohydrate (PPA-Na H,O) purchased from 
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382 TAKA1 ET AL. 

TokyoKaseiKogyo,Jpn.  A s e r i e s o f  o - ,m-andp-subs t i t u t ed  

PPAs w e r e  p repa red  by t h r e e  s t e p  procedures  u s i n g  t h e  

cor responding  mono-subst i tuted benzaldehydes and N- 

a c e t y l g l y c i n e  as s t a r t i n g  materials. The p u r i t i e s  of PPA 

and mono-subst i tuted PPAs w e r e  checked by e l emen ta l  

ana lyses  and 'H NMR s p e c t r a .  

Measurement 

'H NMR s p e c t r a  i n  s o l u t i o n  w e r e  recorded  on a JEOL JNM-LA 

400 spec t romete r .  The samples were d i s s o l v e d  e i t h e r  i n  

CD,CNorinCDCl,. Indeterminingtheequilibriumconstants, 

t h e  s p e c t r a  w e r e  t aken  i n  72  hours  a f t e r  t h e  sample 

p r e p a r a t i o n  so as t o  a l l o w  e q u i l i b r i u m  t o  reach .  K i n e t i c  

parameters  w e r e  c a l c u l a t e d  from t h e  'H NMR data o b t a i n e d  a t  

2 5 ,  4 0  and 55 " C .  The e l emen ta l  a n a l y s e s  w e r e  carried o u t  

on a Yanaco CHN Corder  MT-3. 

Quantum Mechanical Calculations 

Molecular  mechanics and semiempirical PM3 MO 

c a l c u l a t i o n s  w e r e  c a r r i e d  o u t  by u s i n g  MM2 and MOPAC 

implemented i n  CAChe run  on an  IBM RISC 6000 

computer. 
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KETO-ENOL TAUTOMERISM 383 

The (2)- 

and (E)-forms w e r e  cons idered  as p o s s i b l e  c o n f i g u r a t i o n s  

f o r  t h e  e n o l  form. R o t a t i o n a l  isomers about  t h e  t h r e e  

The atom numbering scheme i s  shown i n  F ig .  1. 

tors ional  ang le s  tl-t3 were t aken  i n t o  account .  As a f i r s t  

s t e p ,  l owenergyconfo rma t ions  are searched  for by changing 

t h e  t o r s i o n a l  a n g l e s ,  t,-t3, us ing  t h e  s e q u e n t i a l  s e a r c h  

o p t i o n  of  t h e  CAChe MM2. The carbonyl  oxygen atom i n  t h e  

c a r b o x y l i c  acid,  O=C-O-H, w a s  f i x e d  a t  t h e  cis- p o s i t i o n  

t o  t h e  hydroxyl  hydrogen atom, because t h i s  conformation 

is  proven t o  be t h e  most s t a b l e  i n  c a r b o x y l i c  ac ids .” ’  Ten 

t o  twelve  of t h e  lowes t  energy conformers are t aken  up and 

t h e  molecular  s t r u c t u r e s  w e r e  op t imized  by t h e  MOPAC PM3 

method. I n  a l l  cases, t h e  PRECISE op t ion  was  used t o  provide  

h ighe r  accuracy  w i t h i n  t h i s  c a l c u l a t i o n .  The t r a n s i t i o n  

s ta te  s t r u c t u r e  and t h e  a c t i v a t i o n  energy f o r  t h e  enol- 

t o -ke to  i n t e r c o n v e r s i o n  w e r e  also c a l c u l a t e d  by t h e  I R C  

( I n t r i n s i c  Reac t ion  Coordina te)  procedure implemented i n  

t h e  CAChe MOPAC. 

RESULTS AND DISCUSSION 

Tautomeric behavior of mono-substituted PPAS 

PPA and a l l  t h e  mono-subst i tuted PPAs e x h i b i t  

e x c l u s i v e l y  t h e  e n o l  ’H NMR f e a t u r e s  i n  CDC1,. When 
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3 84 TAKA1 ET AL. 

01 

3 

(2)-enol 

t] = 01-Cl-C2-C3 
t2 = H12-02-C2-C3 
tj = c2-c3 -c4 -c5  

(I:’)-enol 

t, = Ol-Cl-C2-C3 

‘c3 = c2-c3 -c4 -c5  
t2 = H12-02-C2-C3 

keto 

t] = 01-Cl-C2-C3 
t2 = 02-C2-C3-C4 
t3 = c2-c3 -c4 -c5  

0 3  

FIG. 1 Numbering scheme and t o r s i o n a l  ang le s  tl-t3 for t h e  (2)- 

e n o l ,  t h e  (E)-enol,  and t h e  k e t o  form of PPA. 

Hydrogen atoms e x c e p t  t h e  hydroxy group are omi t t ed  

for c l a r i t y .  
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KETO-ENOL TAUTOMERISM 385 

dissolved i n  CD3CN, t h e  resonances due t o  t h e  k e t o  form 

appear  and i n c r e a s e  i n  i n t e n s i t y  w i t h  time a t  t h e  expense 

of t h e  e n o l  form. Table  1 summarizes some NMR data of t h e s e  

compounds. This  time-dependent enol - to-ke to  i n t e r -  

convers ion  c a n b e  fo l lowedby analyzingtheintensitychange 

i n  t h e  e n o l i c  -CH= and t h e  k e t o n i c  -CH2- s i g n a l s .  The 

keto-enol  e q u i l i b r i u m  appears  t o  be  reached  i n  about  7 2  

hours a f t e r  t h e  sample p repa ra t ion .  A small amount of  

deg rada t ion  p roduc t s  w a s  also d e t e c t e d ,  which was not  taken  

account  of  i n  t h e  c a l c u l a t i o n  o f  t h e  e q u i l i b r i u m  constant .  

F igure  2 d e p i c t s t h e d e p e n d e n c e  o f t h e e q u i l i b r i u m c o n s t a n t s  

on t h e  mono-subs t i tu t ion  a t  t h e  phenyl r i n g  of  PPA. It i s  

noteworthy t h a t  t h e  o - s u b s t i t u t e d  PPAs g e n e r a l l y  have much 

l a r g e r  e q u i l i b r i u m  c o n s t a n t s  t h a n  t h e  m- or p-  s u b s t i t u t e d  

PPAs . Furthermore,  t h e y  t e n d  t o  i n c r e a s e  w i t h  t h e  o r d e r  of 

bu lk iness  of t h e  s u b s t i t u e n t s .  The e q u i l i b r i u m  c o n s t a n t s  

appear  t o  be l i t t l e  dependent on t h e  e l e c t r o n i c  n a t u r e  of 

t h e  s u b s t i t u e n t s .  This  f i n d i n g  sugges t s  t h a t  t h e  steric 

factor is more impor tan t  t h a n  t h e  e l e c t r o n i c  n a t u r e  of t h e  

s u b s t i t u e n t s  i n  de te rmining  t h e  p o s i t i o n  of t h e  keto-enol  

equ i l ib r ium.  The steric r e p u l s i o n  between t h e  o- 

s u b s t i t u e n t  and t h e  -CH= p ro ton  may h inde r  t h e  co -p lana r i ty  
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386 TAKA1 ET AL 

TABLE 1 
Some NMR data of PPA and its mono-substituted derivatives in CD,CN solution 

Keto En01 
6(-CH,-) 6(-CH,-) 'JCHZ. 6(-CH=) S(-CH=) 'JCH, 

Subs t. /ppm /ppm /Hz /ppm /ppm /Hz 
CH,O- 0- 4.09 40.5 130 6.91 104.9 161 

m- 4.13 45.3 129 6.49 110.6 157 
p -  4.09 44.4 129 6.49 111.5 160 

CH,- 0- 4.24 43.5 129 6.69 108.3 159 
m- 4.12 45.2 129 6.49 111.7 159 
p- 4.11 45.5 129 6.50 111.6 156 

H- 4.18 45.4 129 6.53 111.5 158 
F- 0- 4.24 39.4 129 6.69 101.8 159 

m- 4.21 44.9 130 
p -  4.17 44.4 129 

CI- 0- 4.34 43.7 129 
m- 4.19 44.8 129 
p- 4.18 44.6 129 

Br- 0- 4.36 46.1 129 
in- 4.18 44.8 130 
p -  4.16 44.6 130 

6.52 
6.52 
6.87 
6.48 
6.50 
6.84 
6.47 
6.68 

110.2 
110.4 
105.9 
109.8 
110.1 
108.8 
109.6 
110.1 

160 
160 
165 
160 
160 
162 
161 
160 

of t h e  c o n j u g a t e d  s y s t e m  and r e d u c e  t h e  s t a b i l i t y  of t h e  

e n o l  form. 

The enol and t h e  k e t o  c o n t e n t  may be c o n n e c t e d  w i t h  t h e  

s- and p - c h a r a c t e r s  of t h e  bond. As t h e  s - c h a r a c t e r  of t h e  

enol =CH- bond and t h e  k e t o  -CH,- bond increases, PPAs have  
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KETO-ENOL TAUTOMERISM 387 

Siibstitiietit 

F I G .  2 Equilibrium constants K, [keto]/[enol] of 
mono-substituted PPAs in CD,CN, at 298K. 

greater propensities toward the enol form. The bond s- and 

p-characters may be reflected in the NMR chemical shifts 

and the ‘JCH values. Bassetti et al. surveyed the effect of 

substituents on the tautomeric equilibria of P-diketonesl2’. 

They found a linear correlation between the enolic ‘J,, 

coupling constants and the equilibrium free energies of the 

tautomerism. We expected a similar correlation for the 

tautomerism of mono-substituted PPAs.  However, the lJ-cH- 
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388 TAKA1 ET AL. 

and t h e  1J-CH2- va lues  are l i t t l e  a f f e c t e d  by t h e  e l e c t r o n i c  

na tu re  and t h e  p o s i t i o n  of  t h e  s u b s t i t u e n t s .  The 

cons ide rab le  dependence on t h e  s u b s t i t u t i o n  p o s i t i o n  are 

observed f o r t h e e n o l - C H = a n d t h e  keto-CH,- carbonchemica l  

s h i f t s .  The va lues  f o r  t h e  o - s u b s t i t u t e d  PPAs are observed 

a t  a h ighe r  f i e l d  by a few ppms t h a n  t h o s e  for t h e  m- or 

p - s u b s t i t u t e d  PPAs except  f o r  t h e  data of  t h e  bromo 

d e r i v a t i v e s .  Such h ighe r  f i e l d  s h i f t  i s  connected w i t h  an  

decreased  s - cha rac t e r  of t h e  carbon atoms and an inc reased  

p ropens i ty  toward t h e  k e t o  form. 

T h e r m o d j n a m i c  a n d  K i n e t i c  A s p e c t s  of t h e  T a u t o m e r i s m  

Thermodynamic and k i n e t i c  parameters  f o r t h e  keto-enol  

tautomerism w e r e  ob ta ined  by measuring t h e  'H NMR s p e c t r a  

of PPA i n  CD,CN a t  t h r e e  d i f f e r e n t  tempera tures  ( 2 5 ,  40, 55 

" C )  . A reversible f i r s t - o r d e r  r e a c t i o n  was p o s t u l a t e d  as 

shown i n  Scheme 1, and t h e  data were f i t t e d  t o  t h e  ra te  

equat ion .  

The l o g a r i t h m o f  d i f f e r e n c e  i n  t h e  e n o l c o n c e n t r a t i o n  

between t h e  t i m e ,  t ,  and t h e  e q u i l i b r i u m  p o i n t  w a s  plotted 

a g a i n s t  t i m e  t o  g i v e  an approximate s t r a i g h t  l i n e .  The 

e f f e c t i v e  rate c o n s t a n t ,  ( k  + k') was ob ta ined  as a s l o p e  

of t h e  l i n e  ( 2 ) .  The rate c o n s t a n t  k, for t h e  forward 
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KETO-ENOL TAUTOMERISM 389 

k 

k '  
Enol -- Keto *** (1) 

[Enol], - [Enol], 

[Enol], - [Enol], 
In = (k + k') t 0.0 (2) 

k + k '  
1 + 1 I K  

k =  *** (3) 

Ell 

R 
Ink = - - T - 1  + InA *.* (4) 

Scheme 1 The rate equat ion f o r  t h e  keto-enol equi l ibr ium of PPA. 

k, k' : rate c o n s t a n t s  of  t h e  forward and t h e  

[Enol] ,  : t h e  en01 c o n c e n t r a t i o n  a t  t i m e  t 
[Enol Io  : t h e  i n i t i a l  en01 c o n c e n t r a t i o n  
[Enol Ie  : t h e  e n o l  c o n c e n t r a t i o n  a t  e q u i l i b r i u m  
K : t h e  e q u i l i b r i u m  c o n s t a n t  
E a  : act ivat ion energy 
A : pre-exponent ia l  f a c t o r  
R : gas  c o n s t a n t  

backward r e a c t i o n  

r e a c t i o n  w a s  c a l c u l a t e d  f r o m t h e  equa t ion  ( 3 ) ,  u s i n g  t h e  

( k  + k') and t h e  e q u i l i b r i u m  c o n s t a n t  va lue ,  K. The 

a c t i v a t i o n  e n e r g i e s  fo r  t h e  forward and t h e  backward 

r e a c t i o n ,  Ea and E a t l  r e s p e c t i v e l y ,  w e r e  estimated by us ing  

theAr rhen ius  p l o t ( 4 ) .  T h e c a l c u l a t e d r a t e a n d e q u i l i b r i u m  

c o n s t a n t s  and t h e  a c t i v a t i o n  e n e r g i e s  are g iven  i n  Table  

2 .  The E a  and Ea'  w e r e  ob ta ined  as 32.7 and 36.4 k c a l  mol-', 

r e s p e c t i v e l y ,  i n d i c a t i n g  t h a t  t h e  k e t o  form is 

thermodynamically m o r e  s t a b l e  t h a n  t h e  eno l  form. 
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TABLE 2 

The kinetic constants for the tautomerism of PPA 

Temperature k + k ‘ K k Number of data 
I K  I min-’ I min-’ 
298 2.48X 10.’ 0.84 1.1 1 x 10.’ 9 

313 5.53X104 1.14 2 . 9 5 ~  10.~ 10 

328 2.96X10” 1.39 1.72 x 10.~ 6 

Quantum Mechanica l  C a l c u l a t i o n s  

The semiempir ica l  PM3 method was  chosen f o r  t h e  

molecular  o rb i t a l  c a l c u l a t i o n s ,  because t h i s  Hamil tonian 

has been shown t o  be q u i t e  r e l i a b l e  f o r  t h e  present 

purpose.13) Tab le  3 summarizes t h e  r e s u l t s  of t h e  PM3 

o p t i m i z a t i o n s  on t h e  ke to ,  t h e  (2 ) - eno l  and t h e  (E) -eno l  

form of  PPA. The f o u r  of t h e  l o w e s t  energy  conformers  

(numbered from ( I )  t o  ( I V ) )  a r e  l i s t e d  f o r  each  form. 

I n s p e c t i o n  of Table  3 i n d i c a t e s  t h a t  t h e  k e t o  forms g i v e  

lower h e a t s  of format ion  b y l - 8  k c a l / m o l t h a n t h e e n o l f o r m s .  

The dipole moments for t h e  k e t o  forms are g e n e r a l l y  g r e a t e r  

t h a n t h o s e o f  t h e e n o l  forms. These r e s u l t s  a r e c o n s i s t e n t  

w i th  t h e  f a c t  t h a t  t h e  k e t o  form i n c r e a s e s  a t  e q u i l i b r i u m  

i n  CD,CN. I n  comparing t h e  (Z)-geometry of  t h e  e n o l  form 

wi th  t h a t  of t h e  (E)-geometry,  t h e  s t r u c t u r a l  p r e f e r e n c e  
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TABLE 3 
PM3 optimized parameters of PPA (heats of formation AH;, 

dipole moment p, and torsional angles t,-s) 

Conformation AH; CC t l  4 %  
lkcal mol-' ldebye I" I" I" 

keto (I) 
keto (11) 
keto (111) 
keto (IV) 

Z-en01 (I) 
Z-enol(I1) 
Z-enol(II1) 
Z-enol (IV) 

E-enol (I) 
E-enol (11) 
E-enol(II1) 
E-enol (IV) 

-101.3 
-101.2 
-101.0 
-101.0 

-93.9 
-93.1 
-92.7 
-92.3 

-92.1 
-92.0 
-91.5 
-91.1 

2.46 -69.5 111.4 103.5 
2.48 71.0 -105.1 -103.6 
2.70 -102.4 -111.0 -106.9 
2.38 -80.9 12.8 90.0 

2.40 -1.6 3.6 57.5 
3.16 174.1 -3.8 -58.0 
1.25 177.0 -176.8 -44.8 
1.19 -1.8 176.0 45.9 

2.26 90.8 0.1 -60.3 
2.23 -87.8 0.5 84.9 
1.21 127.6 -147.8 -63.2 
1.57 55.1 143.2 88.1 

is observed for the former, although the energy difference 

is very small (1-2 kcal). 

We have attempted to reproduce the observed trend that 

the o-substitution favors the keto form in the tautomeric 

equilibrium by the calculation. However, no systematic 

trend was not drawn from the calculation. 
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h 
P 
5 

TAKA1 ET AL 

Transition state 

(a) 

Enol form 

- Keto form 
0 

I 

-8.9 kcal 

I 0.0 kcal 
-6.1 kcal 

,,' 50.1 kcal' $.* 

0.0 kcal L 

,,' 50.1 kcal' $.* 

0.0 kcal L 

-5.7 k a l  

F I G .  3 R e a c t i o n  mechanisms for t h e  k e t o - e n o l  tau tomer ism.  

( a )  d i r e c t  m i g r a t i o n  mechanism 

( b )  w a t e r  assisted mechanism 

( c )  methanol  a s s i s t e d  mechanism 
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KETO-ENOL TAUTOMERISM 393 

The t r a n s i t i o n  s ta te  s t r u c t u r e s  fo r  t h e  keto-enol  

tautomerism w e r e  c a l c u l a t e d  by us ing  t h e  IRC o p t i o n  of t h e  

PM3 method. W e  assumed t h a t  t h e  keto-enol  tautomerism 

occurs  th rough t h e  d i r e c t  p ro ton  mig ra t ion  from t h e  

methylene g r o u p t o t h e a - k e t o o x y g e n  i n t h e k e t o f o r m ( d i r e c t  

migrat ionmechanism).  However, as shownintheNMRresul t s ,  

t h e  enol - to-ke to  t r ans fo rma t ion  proceeds muchmore r a p i d l y  

i n  p o l a r  s o l v e n t s  such as w a t e r ,  methanol and a c e t o n i t r i l e .  

Therefore ,  involvement of t h e  s o l v e n t  molecule  w a s  

sugges ted  f o r  t h e  keto-enol  tautomerism of  mono- 

c h l o r o a c e t y l  ch lor ide ." '  Thus we have also s t u d i e d  t h e  

s o l v e n t - a s s i s t e d  mechanism where t he  s o l v e n t  molecule  i s  

involved i n t h e  t r a n s i t i o n s t a t e  s t r u c t u r e .  The reasonab le  

t r a n s i t i o n  s ta te  s t r u c t u r e s  have been ob ta ined  f o r  t h e  

water- a n d t h e  methanol-assistedmechanism. The r e s u l t s o f  

t h e  c a l c u l a t i o n s  are summarized i n  F ig .  3 .  I t  i s  noted  t h a t  

t h e  s o l v e n t - a s s i s t e d  mechanisms r e s u l t  i n  lower a c t i v a t i o n  

e n e r g i e s  t h a n  t h e  direct  mig ra t ion  mechanism by 15.3 and 

1 1 . 2  kca l  mol-' fo r  t h e  w a t e r  assisted and methanol -ass i s ted  

mechanisms, r e s p e c t i v e l y .  T h i s  f i n d i n g  sugges t s  t h a t  t h e  

s o l v e n t  molecule  p l a y s  an impor tan t  role i n  t h e  keto-enol  

tautomerism of PPA. 
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